ISSN 1870-4069

Evaluation of View-wise ResNet on the Digital
Database for Screening Mammography

Osmar Moreno-Rivas!, Alfonso Rojas-Dominguez', Matias Alvarado?,
Manuel Ornelas-Rodriguez?

! Tecnoldgico Nacional de México,
campus Ledn,
Mexico

2 Instituto Politécnico Nacional,
Centro de Investigacién y Estudios Avanzados,
Mexico

m22240203@leon.tecnm.mx, alfonso.rojas@gmail.com, matias@cs.cinvestav.mx,
manuel.ornelas@leon.tecnm.mx

Abstract. Screening mammography aided by deep learning classifiers
has demonstrated enhanced efficacy by reducing False Positives,
consequently minimizing unnecessary recalls that cause anxiety
among participants. However, the development of effective classifiers
necessitates substantial computational resources and a vast amount
of training data. Despite these requirements, it is generally assumed
that these models possess a high level of generalization, enabling them
to perform well on similar datasets to the ones they were trained on.
In this study, we assess the performance of a ResNet-based model for
screening mammography presented by Wu et al. (2019). This model was
trained on an extensive dataset of over one million images and reported
an Area Under the ROC curve (AUC) of 0.88. Previous studies have
fine-tuned similar models using additional data, achieving AUC values
around 0.9. However, these studies had limited sample sizes in their
test sets, consisting of only a few hundred images, thereby restricting
the applicability of their findings and conclusions. In contrast, our
evaluation utilizes the DDSM, the largest publicly available dataset for
screening mammography, containing over 10,000 images. The evaluated
model achieved an AUC of approximately 0.50, significantly lower than
the performance reported by other authors.
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1 Introduction

Breast cancer is the most commonly diagnosed cancer among women; the
World Health Organization estimates that 7.8 million women were diagnosed
with breast cancer in 2021. Moreover, it was estimated that in 2022 30% of
diagnosed cancers in women would be breast cancer according to the National
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Breast Cancer Foundation3. However, the lifetime breast-cancer survival rate
increases with timely diagnosis; this is why new detection and diagnostic
techniques for breast cancer are constantly being developed. The most common
acquisition technique employed in screening tests for detection of breast cancer
is mammography, because it is a non-invasive and low cost technique compared
with other techniques like MRI (magnetic resonance imaging) or CT-scan
(computerized tomography). Screening tests for early detection of breast cancer
through mammography can be considered a first line of defense, from which a
few cases that warrant further testing can be identified (see Fig. 1). Screening
tests are indicated for women who have not presented any symptoms potentially
indicative of breast cancer, but who belong to an age-range in which prevalence of
the disease is the highest. These studies have the ability to detect abnormalities
that cannot be felt through palpation or self-examination.

Computer-aided diagnosis (CAD) systems have been successfully used to
support human decision-making in radiological image analysis and precision
medicine in general [4]. Traditional approaches to breast cancer CAD involve
extracting manually-designed features to detect breast masses and classify them
as probably benign or malignant [5,11]. However, the outputs from these
CAD systems in conjunction with radiologists’ reviews result in numerous
false-positives, which can increase reading times [6]. Alternative approaches
involve learning features directly from the full images through deep neural
networks [8]; we can list a variety of such: Convolutional Neural Networks
(CNNs), Residual Networks (ResNets), Dense Networks, among others [11].

In particular, ResNets have shown favorable results on detection and
classification of breast cancer. Xiang Yu et al. 2020 [14] obtained an average
accuracy of 95.74% correct classification on the MINI-MIAS and InBreast
datasets. On the other hand, Y. Chen et al. [1] has reported an accuracy of
93% with a CCN-based model fine-tuned with a ResNet architecture on the
CBIS-DDSM [9] database. It is worth mentioning that the databases that have
been employed in those previous studies contain only a few hundred images,
and thus the reported results are limited. Our contribution is the evaluation of
a reportedly efficient model [13] on DDSM, a public dataset with over 10,300
mammographic images.

Honig et al. 2019 [7] conducted a study about impact factors of False Positives
(FPs) in recall cases; their study found that 91.6% of 1,258 recalled cases were
FPs. Thus, a vast majority of women who received a recall notification had
not actually developed breast cancer, despite initial screening results suggesting
otherwise, which can result in unnecessary procedures and psychological effects
like elevated anxiety in women [2]. This justifies further research towards the
improvement of breast cancer screening systems with tools like DL (Deep
Learning) models, to ensure that women receive the most accurate and reliable
information about their health. On the other hand, DL-CAD systems have
proved the reduction of FPs per image to 69% in comparison with traditional
CAD systems that often yield a higher number of FPs [10]. Moreover, DL-CAD

3 https://www.nationalbreastcancer.org

Research in Computing Science 152(10), 2023 16 ISSN 1870-4069



Evaluation of View-wise ResNet on the Digital Database for Screening Mammography

Screening Test by Further Test
Mammogram + Ultrasound
* MRI
* CT Scan
* Biopsy

¥

Final Outcome

* Advice and Support
* Treatment
* No further action

Fig. 1. Breast cancer mammography-based screening test. A very small portion of the
cases (red outline) require further tests such as Ultrasound, MRI, or a biopsy. After
further detection and diagnostic tests, a final outcome can be reached.

systems reduce 17% the reading time per case performed by radiologists in
comparison when they used CAD systems [10], which in turn improves the
benefit-cost ratio for massive studies of breast screening in women. Additionally,
these systems provide more precise results and report them in less time.

2 Materials and Methods

2.1 DDSM Database and Inclusion Criteria

The Digital Database for Screening Mammography (DDSM) is a public resource
that contains 2,588 exams for detection of breast cancer, including two standard
anatomical views: Cranio-Caudal (CC) and Mediolateral Oblique (MLO). The
images have an average size [height x width] in pixels, for CC: [2,677 x 1,942]
and for MLO: [2,974 x 1,748]. The optimal size stated by Wu et al. [13] to run
their model is [2, 290 x 1,890]; thus the DDSM images mostly comply with these
parameters. There are three possible outcomes for each study in the DDSM:
benign, malignant and no finding (or normal).

An exam generally consists of four mammograms: L-CC (Left breast-CC
view), R-CC (Right breast-CC view), L-MLO (Left breast-MLO view) and
R-MLO (Right breast-MLO view). Nevertheless, five exams in the DDSM only
include three images. We also found 209 studies that have more than one overlay
in the same image (meaning that there is more than one abnormality present
in one image). In 130 cases in which an abnormality could only be found in
one of the two views (either CC or MLO, but not both). Finally, we found 5
studies with duplicated patient ID. After excluding the studies described above,
we ended up with a total of 2,244 studies to be used in our evaluation.
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2.2 Neural Model for Screening Mammography

In 2019 Wu et al. described a multi-view neural-network system for screening
mammography based on ResNets [13] which consists of two core modules: (i)
four view-specific columns that output a fixed-dimension hidden representation
for each mammography view, and (ii) two fully-connected (FC) layers to map
the hidden representations to the output predictions [13]. Depending on how
the hidden representations are aggregated into a final prediction, four different
models are produced: View-wise, Image-wise, Side-wise and Joint models.

According to Wu et al., the View-wise model obtained the best results among
their models, with an Area under the ROC Curve (AUC) of approximately
88%. Consequently, this View-wise model is employed in our evaluation and
is described below. A schematic representation of the model is shown in Fig.
2. In the view-wise model, the 256-dimensional hidden representations of the
CC views (L-CC and R-CC) are concatenated together before going through
the FC layers. Independently, the representations of the MLO views (L-MLO
and R-MLO) are also concatenated together and pass through their own FC
layers. This process produces independent predictions for CC and MLO views,
which are averaged during inference to produce the breast-wise predictions [13].
At the top of Fig. 2 it can be seen that the model produces four numerical
predictions (two for each breast) named Right-Benign: gz ;, Right-Malignant:
YRr,m, Left-Benign: §r, ;, and Left-Malignant:gy, ,,,. These predictions are to be
compared against binary labels that correspond to the ground truth of the cases
in the evaluation dataset.

2.3 Model Predictions

To evaluate the View-wise model its predictions are binarized and compared
against binary labels that represent the pathology of each case in our evaluation
dataset. The binary labels (two per breast, four per study) indicate the presence
(1) or absence (0) of a finding, either Benign or Malignant, in the corresponding
breast. Table 1 shows an example of the labels for one patient; in this example,
a malignant finding is present in the left breast and a benign finding is present
in the right breast. The view-wise model produces four numerical predictions
between 0 and 1; binarization of the predictions is done by comparing these
against a detection threshold, as illustrated in Fig. 3.

Whenever the value of a numerical prediction is equal to or above the
detection threshold, it is assigned a value of 1, otherwise it is assigned a value
of 0. If the values of both malignant and benign predictions of the same breast
surpass the threshold, we assign 1 to the malignant prediction and 0 to the
benign prediction; this is done to avoid contradictory predictions and to prioritize
the detection of malignant findings over benign ones. Importantly, we test ten
different threshold values, regularly spaced between 0 and 1, to generate ten
different sets of results with which to evaluate the model and build a ROC curve.
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Fig. 2. Schematic representation of the View-wise model proposed by Wu et al. [13].

Table 1. Example of labels for one mammographic study.

Left Benign

Left Malignant

Right Benign

Right Malignant

0 1 1 0
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Fig. 3. Example of binary predictions generated by thresholding; a binary prediction
is obtained for each side and type of finding. Notice that the threshold=0.2 is only used
to illustrate the process; in the actual evaluation ten threshold values were employed.
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Ground Truth

Benign Malignant Normal
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Fig. 4. Multi-class confusion matrix employed to evaluate the model; notice the
different possible errors for each of the three classes: Benign, Malignant and Normal.

2.4 Model Evaluation

To evaluate the classification performance of the model, a multi-class confusion
matrix is employed. There are three classes in our test dataset: Benign,
Malignant, and Normal (see Fig. 4). For each class the model’s prediction can
be correct, or it can be one of two types of misclassification, depending on the
Ground Truth (GT). For instance, if the model produces a Benign prediction,
this may be a True Benign, a False Benign of Type I (GT indicates that the true
class is Normal), or a False Benign of Type II (the actual class is Malignant).

To correctly compute each of the values in a confusion matrix, the
binary predictions produced by the model need to be compared against
the corresponding GT labels. Figure 5 shows a flowchart of the different
comparisons that must be carried out to reach one (and only one) of the nine
possible outcomes contained in a confusion matrix. Notice that the predictions
and GT labels correspond to individual mammograms, while each confusion
matrix corresponds to one of the patient’s sides (Left or Right). In this work
we tallied the classification results independently, for the Left side and for the
Right side.

Complementarily to the multi-class evaluation, we also performed an
evaluation of the model in which only the Malignant and Normal classes are
considered (Benign cases were treated as Normal). Thus we can examine if
there is a difference in the performance of the model when considering only two
classes instead of three. In the work of Wu et al. [13] there is not sufficiently
detailed information regarding how numerical predictions are binarized and on
how the Benign predictions were treated to obtain their final results. Our best
assumption is that Benign predictions were ignored in the computation of their
ROC curves.

3 Results and Discussion
Table 2 shows a small portion of the results of the model obtained with different

values of the detection threshold. As can be seen, the performance of the
View-wise model is higher for the smaller values of the detection threshold and
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Fig. 5. Flowchart to generated the classifications of each type finding.
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gradually decreases as the model is tested with larger threshold values. However,
even for the smallest threshold value, the model shows a very low performance.

This low performance is visualized for both sides: in Table 2-a) and 2-d) we
can see that class Benign has more instances correctly classified than classes
Malignant and Normal. In contrast, Table 2-c) and 2-f) show that class Normal
has more instances correctly classified than classes Malignant and Benign. This
indicates that with larger threshold values the correct predictions fall much more
into the Normal class, because the model does not detect as many abnormalities
as with smaller threshold values. On the other hand, correct classifications for
class Malignant are always very low, regardless of the threshold value applied.
Specially it should be noticed that for larger threshold values there are no hits for
instances on the Left side (Table 2-b) and 2-c)) and there is only four instances
correctly classified among instances of the Right side (Table 2-¢) and 2-f)).

Based on the confusion matrices obtained for the two-class evaluation (on
classes Malignant and Normal) for different threshold values, which effectively
represent a set of operating points, an ROC curve was obtained for the View-wise
model on the DDSM dataset, with an AUC of about 0.5. Clearly this (around
50% correct classification) is not a desirable performance, as it is indicative that
the model does not posses any predictive ability. Also, this was not the expected
result, given that Wu et al. reported an ROC curve of this same model on their
dataset with about 88% correct classification.
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Table 2. Example confusion matrices; a) and d): threshold=0.1, b) and e):
threshold=0.6, c¢) and f): threshold=0.9.

Ground Truth

Left Side Right Side
Class Benign Malignant Normal Benign Malignant Normal
a) 405 338 128 d) 359 302 1232
Pred. 20 37 112 26 55 236
33 37 1134 3 5 26
b) 0 5 10 e) 9 22 86
Pred. 0 0 1 0 3 2
458 407 1363 379 337 1406
c) 0 0 0 f) 0 3 2
Pred. 0 0 0 0 1 0
458 412 1374 388 358 1492

As can be observed, the evaluation on a different dataset (other than that
with which it was trained) is not favorable to this View-wise model, as we
obtained approximately 33% lower performance on the DDSM than what was
previously reported on the NYU dataset [13]. Moreover, we can observe that
in both views (CC and MLO) the DDSM images possess close to optimal sizes
to be processed by the model, but we suspect that there are other properties
that may affect the performance, such as poor contrast, different range of the
intensity values, noise in the images etc. Although it is not very probable, image
pre-processing could also affect the performance of the model.

Recent investigations have made similar observations. Frazer et al. [3] used
models pretrained with the NYU dataset of Wu et al. [13] as the base for
their whole-image classifier, observing poor performance (around 55% correct
classification). Then the models were retrained with a small subset of DDSM
and up to 87% correct classification was obtained. Similarly, Shen et al. [12]
found that when applying transfer learning with around 239 images on a model
pretrained with CBIS-DDSM, classification of the InBreast dataset improved.
Because of this, we attempted to classify the DDSM database using the model
proposed by Shen et al. [12]. This model is open source and has an architecture
that enables it to classify small patches and extend the patch classifier to the
entire image. We obtained similar results with the model proposed by Shen
et al. as with the model of Wu et al., achieving an AUC of approximately
0.5. Subsequently, we applied transfer learning with a small subset of the
DDSM database. Fig. 7 illustrates the training and validation curves. We
observed that the model of Shen et al. exhibited good retraining; however, it
did not improve the classification performance as expected. We suspect that this
behavior is due to the heterogeneity of the images in the DDSM database, where
some images have excessive contrast, while others have a noisy background, as
illustrated in Fig. 6.

To address this issue, we clustered the mammograms to obtain image sets
with reduced heterogeneity. We first performed segmentation to separate the
breast from the background. This was done by applying a manually defined
threshold of 128 (half of the grayscale range from 0 to 255). Alternatively we
also utilized Otsu’s method to determine the optimal threshold value for each
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Right-CC Left-CC Right-MLO Left-MLO

Fig. 6. A few images of DDSM to illustrate the heterogenity in the dataset.
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Fig. 7. Results of fine-tuning the model by Shen et al. with 600 images of DDSM.

image, resulting in more accurate segmentation (Fig. 8). Next, background and
breast tissue features (mean and standard deviation of the pixel values) were
obtained from the images and the K-means algorithm was employed to partition
the DDSM images into subsets with similar properties.
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a) Original image b) Threshold = 128 ¢) Otsu's threshold = 77

Fig. 8. Image segmentation with manual threshold and Otsu’s threshold.

We applied different methods to determine the correct number of clusters:
gap statistic, elbow method, and silhouette. All of these methods converge to
the most suitable number of clusters, which is 4 (Fig. 9-a). The cluster points
represented by the features extracted from the images using the Otsu’s threshold
are shown in Fig. 9-b.

Analysis of the data clusters in Figure 9-b reveals that cluster 1 comprises
images with dark background (small background mean) and bright tissue (large
tissue mean). Moreover, the grayscale values of the tissue exhibit significant
variation (large standard deviation). Overall, these characteristics indicate
well-equalized images.

Finally, the model was fine-tuned separately with 627 images per cluster, in
proportions of 90% and 10% for training and validation, respectively, according
to the methodology followed by Shen et al. [12], classification results reported
in Table 3. The clusters generated by features extracted through Otsu’s method
display highly similar AUC scores, all above 0.60. Notably, cluster 3 exhibits
the best performance in training, with an AUC=0.92. Conversely, the clusters
generated via the single threshold method show greater discrepancies in AUC
scores on the test set, ranging from 0.38 to 0.82. The lowest score is observed
for cluster 2, while cluster 3 achieves the highest score among both methods,
reaching an AUC=0.82. Additionally, cluster 3 when generated from a single
threshold showcases the highest score in training, AUC=0.83, compared to the
other clusters from the same method. The closest to this performance is cluster
1, with an AUC=0.82.

In conclusion, our analysis indicated that using four clusters yields the most
appropriate split of the DDSM data. Features extracted through the Otsu’s
method demonstrate consistent performance across the clusters, while the single
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Table 3. AUC results of fine-tuning the subsets on DDSM.

with Otsu’s threshold with threshold=128
Cluster  Images Training Test Images Training Test
0 198 0.69 0.64 313 0.78 0.54
1 462 0.84 0.68 332 0.82 0.66
2 316 0.79 0.69 209 0.60 0.38
3 143 0.92 0.66 259 0.83 0.82
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Fig. 9. Determinate the K-value and features representation for Otsu Threshold A)
Gap statistic method applied to extracted features to determined best K-value B)
extracted features from images, grouped into four clusters through K-means algorithm.

threshold method displays more variability. Specifically, cluster 3 consistently
exhibits a good performance in both training and testing, regardless of the
threshold method used. These results highlight the value of cluster analysis
and careful feature selection for images to reduce heterogeneity in the DDSM

database for classification tasks.

4 Conclusions

We conclude that evaluation of the model described by Wu et al. on the DDSM
has not been favorable. As we have previously mentioned, we believe that there
exist several properties of the images in the DDSM that may be negatively
affecting the performance of the model. We also observed that evaluating
only two types of classes (i.e. Malignant vs. Normal) does not produce any
performance improvement when compared against the evaluation with three
classes (Malignant, Benign and Normal). However, as future work we will test
another public dataset (for instance, InBreast) to determine if the model’s
performance changes or not. We will also modify the preprocessing of the images
to try to obtain better results. Our purpose is to evaluate the feasibility of
employing a pretrained model directly on datasets of the same nature as that in
which the model was trained originally (in this case, screening mammograms),
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that is, to evaluate in practice the generality of such models. Moreover, it is
necessary to experiment with more extensive feature selection for the DDSM
database in order to improve the classification performance of the model of Shen
et al., in this way we hope to obtain better results when applying fine-tuning
and reduce the heterogeneity of the training images.
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